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Up-Regulation of cDK5/p35 by Oxidative Stress in
Human Neuroblastoma IMR-32 Cells
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Abstract Cdk5, a member of the cyclin-dependent kinase (cdk) family, is predominately active in neurons, where its
activity is tightly regulated by the binding of its neuronal activators p35 and p39. Cdk5 is implicated in regulating the
proper neuronal function; a deregulation of cdk5 has been found associated with Alzheimer’s disease and amyotrophic
lateral sclerosis. As oxidative stress products have been seen co-localized with pathological hallmarks of neuro-
degenerative diseases, we studied the effect of oxidative stress on the cdk5 enzyme in human neuroblastoma IMR-32 cells.
We evaluated the effects of 4-hydroxynonenal and Ascorbate plus FeSO4 on cdk5 activity and on the expression of cdk5
and p35 proteins. We report here that oxidative stress stimulates cdk5 activity and induces an upregulation of its regulatory
and catalytic subunit expression in IMR-32 vital cells, showing that the cdk5 enzyme is involved in the signaling pathway
activated by oxidative stress. J. Cell. Biochem. 88: 758–765, 2003. � 2003 Wiley-Liss, Inc.
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Cdk5 is a serine/threonine kinase in the
cyclin-dependent kinase (cdk) family, which is
structurally related to other cdks known for
their role in regulating the cell cycle [Lew and
Wang, 1995, review].Unlike others cdks, cdk5 is
not dependent on its association with cyclins for
activation, rather its activity requires associa-
tion with one of two brain-specific regulatory
subunits, called p35 and p39 [Lew et al., 1994;
Tsai et al., 1994; Tang et al., 1995; Humbert
et al., 2000].

Cdk5/p35 activity has been implicated in a
wide range of cellular functions. Cdk5/p35 is
involved in neuronal development and migra-
tion, neurite outgrowth, synaptic transmission,
dopamine signaling in striatum, exocytosis,
differentiation of muscle cells, and in the
organization of acetylcholine receptors at the
neuromuscular junctions [Dhavan and Tsai,

2001;Maccioni et al., 2001; Paglini andCaceres,
2001; Smith et al., 2001, reviews]. Results from
a number of studies including dominant nega-
tive mutant forms of cdk5 and knock-out mice
demonstrate that the cdk5/p35 complex plays
an essential role in neurite outgrowth and
neuronal differentiation [Nikolic et al., 1996;
Ohshimaet al., 1996].At the cellular level, cdk5/
p35 regulates the cytoarchitecture of the cells
through the modulation of actin dynamics,
microtubules, and neurofilaments functions
[Grant et al., 2001; Smith et al., 2001]. Improper
cdk5 activity has been detected in the brain of
Alzheimer’s disease [Patrick et al., 1999] and
amyotrophic lateral sclerosis [Bajaj, 2000;
Patzke and Tsai, 2002, reviews]. Pathological
hallmarks of different neurodegenerative dis-
eases partially overlap with staining for cdk5
and with oxidative stress products [Yamaguchi
et al., 1996; Pei et al., 1998; Bajaj, 2000;
Takahashi et al., 2000; Adams et al., 2001;
Sayre et al., 2001; Sherer et al., 2001; Borghi
et al., 2002].

To explore the possibility that oxidative stress
may function as a regulator of the cdk5 enzyme
we examine cdk5/p35 activity during the cellu-
lar response to oxidative stress in human
neuroblastoma IMR-32 cells.

Using 4-hydroxynonenal (HNE) or Ascor-
bate plus FeSO4 (Asc/FeSO4) as oxidative
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insults, we demonstrate that sub-millimolar
concentrations of these agents lead to upregula-
tion of cdk5 activity, as well as catalytic and p35
regulatory subunit expression in vital human
neuroblastoma cells, showing that oxidative
stress is involved in the regulation of the cdk5/
p35 enzyme.

MATERIALS AND METHODS

Cell Cultures

Monolayer human neuroblastoma IMR-32
cell line [Tumilowicz et al., 1970] was main-
tained under subconfluent conditions in RPMI
1640 medium (Gibco), supplemented with 0.5%
non-essential aminoacids, penicillin (100U/ml),
streptomycin (100 mg/ml), glutamine (2 mM),
and 10% (v/v) fetal bovine serum in 75 cm2

tissue culture flasks at 378C in a humidified
atmosphere with 5% CO2. The growth medium
was changed twice a week.

Experimental Treatments

HNE (Calbiochem) and Asc/FeSO4 (Sigma)
were used to induce oxidative stress. HNE is a
potent lipid peroxidation-derived aldehyde; it
can be produced in response to oxidative insults
and, in turn, is a potential inducer of intracel-
lular oxidative stress through peroxide produc-
tion [Uchida et al., 1999]. Asc/FeSO4 is an
oxidant agent which induces lipid peroxidation
and HNE production [Zhang et al., 1993;
Tamagno et al., 2000].
The cells were plated 48 h prior to chemical

exposure and were at 70–80% confluence at the
time of treatment. The medium was changed
and HNE (10 mM) or Asc/FeSO4 (500 mM/5 mM)
was added. The effect was analyzed 6 and
24 h after the addition of the oxidant agents.
Controls without oxidant exposure were run
simultaneously.
The viability of the IMR-32 cells was mea-

sured 6 and 24 h after chemical treatment.
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT)-assay was used for
the quantification of metabolically active cells.
Mitochondrial dehydrogenases metabolize
MTT to purple formazan dye and MTT reduc-
tion is a measure of the mitochondrial function
that is generally correlated with cell viability
[Mosmann, 1983; Green et al., 1984]. MTT-
assay was performed following the manufac-
turer’s instructions (Sigma).

Antibodies

The followingantibodieswereused: anti-cdk5
(C-8; Santa Cruz Biotechnology, Inc, CA), an
affinity-purified rabbit polyclonal antibody
raised against a peptidemapping at the carboxy
terminus of cdk5 of human origin, which can
immunoprecipitate cdk5 as active kinase and
does not react with cdk2 or other cdks; anti-p35
(C-19; Santa Cruz Biotechnology, Inc, CA), an
affinity-purified rabbit polyclonal antibody rais-
ed against a peptide mapping at the carboxy
terminus of p35 of human origin, p35(C-19)P;
anti-p35 (N-20; Santa Cruz Biotechnology, Inc,
CA), an affinity-purified rabbit polyclonal anti-
body raised against a peptide mapping at the
amino terminus of p35 of human origin; anti-
rabbit IgG conjugated with peroxidase as a
secondary antibody (Santa Cruz Biotechnology,
Inc., CA).

Immunoprecipitation and cdk5
Kinase Activity Assay

The medium was removed 6 and 24 h after
treatment; cells were washed with cold phos-
phate buffer saline (PBS), scraped and collected
by centrifugation for analysis.

Cell extracts were obtained by lysing cells
in lysis buffer (50 mM Tris-HCl, pH 7.5,
250 mM NaCl, 5 mM EDTA, pH 8.0, 0.1%
NP-40, 5 mM DTT) supplemented with cock-
tails of protease and phosphatase inhibitors
(Sigma) for 30 min at 48C [Nikolic and Tsai,
2000]. Cell lysates were recovered and centri-
fuged at 10,000g for 5 min at 48C. Protein
concentration was determined using the bicin-
choninic acid (BCA) assay (Pierce). One hun-
dred fifty micrograms of total proteins were
incubatedwith rabbit IgGanti-cdk5 (C-8) at 48C
with gentle shaking for 1 h, followed by
precipitation with Protein A/G PLUS-agarose
(Santa Cruz Biotechnology, Inc., Santa Cruz,
CA) for 1 h at 48C. The immunoprecipitates
were washed three times in lysis buffer, then
twice in kinase buffer (50 mM Hepes at pH 7.9,
5 mM MgCl2, 1 mM DTT). For each sample,
a total volume of 20 ml of the kinase assay
mixture, containing 50 mM HEPES, pH 7.9,
1 mM DTT, 5 mM MgCl2, 20 mM ATP, 2 mg
of histone H1(Type III, from calf thymus,
Sigma) was added to the cdk5 immunopre-
cipitates. The phosphorylation reaction was
initiated with the addition of [g32P]ATP (2 mCi)
(New England Nuclear, Dupont NEN, Boston,
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MA) and incubated at 308C for 30 min.
The reaction was terminated by adding two
times Laemmli sample buffer and boiled for
5 min prior to loading on the gel. Phospho-
rylated histone H1 was separated by 10%
SDS–PAGE, transferred to polyvinylidene
difluoride (PVDF) membranes, visualized and
quantified by PhosphoImager (BioRad). The
lack of labeled protein in the gel autoradiogra-
phy after blotting demonstrated the efficiency
of the transfer.

Western Blot Analysis

Cdk5 and p35 steady-state levels were
detected in total cell lysates by Western blot
analysis using specific antibodies. Briefly, cells
were lysed in hot SDS-sample buffer (62.5 mM
Tris-HCl, pH 6.8, 2% SDS, 1% 2b-mercaptoeta-
nol, 10% glycerol) and boiled for 5 min. Total
proteins (50 mg of protein/lane) were resolved on
a 10% SDS-polyacrylamide gel [Laemmli, 1970]
and blotted on PVDF membranes (Hybond-P,
Amersham Pharmacia). The membranes were
blocked for 1 h at room temperature (RT) with
blocking solution (25 mM Tris-HCl, pH 7.6,
137 mM NaCl, 0.1%Tween-20, 5% dry milk
and 3% BSA ) and incubated with anti-cdk5
polyclonal antibody (C-8, 1:1,000) or anti-p35
polyclonal antibody (C-19, 1:1,000) for 2 h at RT.
The membranes were washed four times with
blocking solution and exposed to peroxidase-
conjugated secondary antibody (1:10,000) in
blocking solution for 1 h at RT. The reactions
were developed with enhanced chemilumines-
cence following themanufacturer’s instructions
(ECL plus kit, Amersham Pharmacia, Chicago,
IL). The protein concentration was determin-
ed by the BCA method. Quantification of the
band signals was carried out by densitometry
(FluorS-Max Imager, Bio Rad).

Identification of cdk5 Regulatory Subunit in
Human Neuroblastoma IMR-32 Cells

To identify the cdk5 regulatory subunit, we
analyze theanti-cdk5 immunoprecipitates (C-8)
used for the kinase assay. Western blot anal-
ysis was determined using specific antibodies
against the carboxy terminus of p35 (C-19,
1:20,000) and the amino terminus of p35
(N-20, 1:5,000). Competition of the p35 antibody
(C-19) with the immunogen peptide p35(C-19)P
was carried out by incubating the antibody with
the peptide prior to immunodetection.

Statistical Analysis

Data are presented as mean�SEM and
were analyzed by one-way ANOVA followed by
Bonferroni’s multiple comparison test. Signifi-
cance was established at a P-value < 0.05 (*) or
< 0.01(**) or < 0.001(***).

RESULTS

Cell Morphology and Viability Are not
Modified by Oxidative Stress

Morphology of human neuroblastoma IMR-32
cells was observed at the phase contrast micro-
scope 6 and 24 h after exposure to HNE (10 mM)
or Asc/FeSO4 (500 mM/5 mM). IMR-32 cells
exposed to the vehicle alone were flat, showed
intact cell bodies and exhibited a fibroblast-like
morphologywith short cytoplasmatic processes.
We did not observe morphological changes
either at 6- and 24-h post-treatments (Fig. 1A).

To validate themorphological observations in
assessing IMR-32 cell viability, the cells were
also examined byMTT-assay. Exposure of IMR-
32 cells to HNE or Asc/FeSO4 did not affect cell
viability, as indicated by an unmodified level of
MTT reduction (Fig. 1B).

Cdk5 Activity Is Increased by Oxidative Stress

Cdk5 activity appeared increased in the
treated cells, as measured by in vitro phosphor-
ylation of histone H1. Figure 2A shows an
autoradiogram of 32P-labeled histone H1; quan-
tification of radioactivity incorporated in his-
tone H1 was performed by phosphoimager
(Fig. 2B). Our analysis revealed a threefold
increase in cdk5 kinase activity in cells exposed
to HNE or Asc/FeSO4, 6 h after treatment, as
compared with untreated cells. Cdk5 kinase
activity returns to control levels 24 h post-
treatment with Asc/FeSO4, while it remains
higher for up to 24 h with HNE treatment.

p35 Is the Regulatory Subunit of cdk5 in Human
Neuroblastoma IMR-32 Cells

Cdk5 kinase activity depends on the asso-
ciation of the cdk5 catalytic subunit and the
regulatory subunit. To identify the cdk5 reg-
ulatory subunit expressed in IMR-32 cells,
we analyzed the cdk5 immunoprecipitates of
untreated and treated cells byWestern blotting
using two different p35 specific antibodies,
one recognizing the C-terminus (C-19) and the
other recognizing the N-terminus (N-20) of the
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human protein p35 (Fig. 3). Our results indi-
cate that the two antibodies recognize the
identical protein p35 on the basis of the same
apparentmolecular weight.Moreover, competi-
tion with the immunogenic peptide p35C-19P
abolishes the detection of the protein present in
the membranes used for Western blot analysis
(Fig. 3).

Cdk5 and p35 Steady-State Levels
Are Increased by Oxidative Stress

To investigate the expression of the cdk5 and
p35 proteins, equal amounts of total protein
extracts from IMR-32 cells were analyzed by
Western blotting using specific antibodies that
are able to recognize the C-terminus of both
proteins, C-8 and C-19, respectively. The cdk5

and p35 proteins were constitutively expressed
in this cell line; the cdk5 and p35 steady-state
levels in total IMR-32 cell extracts detected 6 h
post-treatment were higher than those from
untreated cells (Fig. 4A,B). Quantitative analy-
sis of theband signals fromthe total cell extracts
revealed a twofold increase in cdk5 protein
levels in response to HNE or Asc/FeSO4, a
threefold increase and a twofold increase in
p35 protein levels in response to HNE and
Asc/FeSO4 respectively, 6 h after treatment
(Fig. 4C,D). These responses persisted for at
least 24 h in the HNE treated cells, while they
returned to basal levels in the Asc/FeSO4

treated cells (Fig. 4A,B,C,D). Using the anti-
body (C-19), which recognizes both p35 and
its C-terminal fragment p25, we detected an

Fig. 1. Cell morphology and viability. A: Morphology of human neuroblastoma IMR-32 cells under phase
contrast microscope 6 and 24 h after exposure to HNE (10 mM) or Asc/FeSO4 (500 mM/5 mM). B: Quantitative
assessment of cell viability by MTT-assay. Results are expressed as the percentage of formazan production
relative to control, which was defined as 100%. Each data point represented the mean� SEM; n¼3;P> 0.05
(Bonferroni’s Multiple Comparison Test).
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increased level of p35 protein and p25 absence
in our experimental conditions.

DISCUSSION

In the present study, human neuroblastoma
IMR-32 cells were analyzed for cdk5 enzyme
regulation in response to oxidant stimuli, such
as HNE and Asc/FeSO4.

We found that cdk5 is active in IMR-32 cells
because the regulatory subunit p35 is consti-
tutively expressed in these cells, as has been
seen in PC12 cells [Yan and Ziff, 1995]. Here
we report that oxidative stress induces an
overactivation of cdk5 kinase, as well as an up-
regulation of catalytic and regulatory subunits.

Cdk5 kinase activity, as well as catalytic and
p35 regulatory subunit expression, are increas-
ed at 6 h after both treatments; HNE formation
is induced by iron-ascorbate as the main alde-
hyde lipid peroxidationproduct [Tamagnoet al.,
2000], therefore exogenous and endogenous
HNE induced by Fe2þ appear to be key media-
tors of cdk5 and p35 regulation. The persistence
of the effects observed 24hafterHNEtreatment
may be due to the preservation of this stable
aldehyde in the culture medium, which may
represent a continuous stimulus [Krumanet al.,
1997]. The single treatments with two agents
did not modify cell morphology and cell viabi-
lity. Moreover, we observed an increased level
of p35 protein without cleavage of p35 to p25,
suggesting that the preservation of mitochon-
drial functions does not lead to the activation of
the calpain required for proteolytic cleavage of
p35 to p25 [Patrick et al., 1999; Kusakawa et al.,
2000; Lee et al., 2000; Nath et al., 2000].

An interesting result from the present study
is the demonstration that the cdk5 enzyme
activity parallels the level of the p35 regulatory
subunit more closely than the level of the cdk5
catalytic subunit. We observed a threefold
increase in cdk5/p35 activity, as well as in the
p35 protein level, while the cdk5 protein level
showed a twofold increase. These results sug-
gest that cdk5/p35 kinase activity primarily
depends on the regulation of the p35 protein
level, which, in turn, may be regulated at the
transcription level.

Fig. 2. Cdk5 kinase activity. IMR-32 cells were treated with
HNE (10 mM) or Asc/FeSO4 (500 mM/5 mM) for the indicated
times. A: Cdk5 activity was determined after immunoprecipita-
tion of IMR-32 cell lysates with cdk5 antibody (C-8), followed
by incubation with 32P-ATP in the presence of histone H1, as
exogenous substrate. Kinase assay showed a threefold increase in
cdk5 kinase activity 6 h after HNE or Asc/FeSO4 treatment. The
activity is increased for at least 24 h in the HNE treated cells,
while it returns to control levels in Asc/FeSO4 treated cells after
24 h. B: Quantification of cdk5 activity: arbitrary units were used
for the y-axis to indicate the relative intensity. Each data point
represented the mean� SEM; n¼3; **P<0.01 (Bonferroni’s
Multiple Comparison Test).

Fig. 3. Identification of the cdk5 regulatory subunit. Cdk5
regulatory subunit was identified in IMR-32 cells 6 h after
exposure to vehicle (untreated) and after treatment with HNE
(10 mM) or Asc/FeSO4 (500 mM/5 mM). Cdk5 was immunopre-
cipitated from 150 mg of cell lysates and the immunoprecipitates
were probed with anti-p35 C-terminus, anti-p35 N-terminus,
or anti-p35 C-terminus in the presence of the corresponding
antigenic peptide C-19P.
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In vivo studies demonstrated that the levels of
both p35 mRNA, protein and cdk5 kinase
activity present the same temporal profile
during development, as well as in adult and
aged rat brains [Tomizawa et al., 1996; Delalle
et al., 1997; Wu et al., 2000]. Recently, it has
been demonstrated that the neuronal specific
activity of the cdk5/p35 kinase is achieved
through the regulation of p35 expression due
to modulation of Sp transcription factor levels
and activity during the neuronal differentiation
of P19 cells [Ross et al., 2002]. Moreover, it has
been reported that oxidative stress enhances
the DNA binding of the transcription factors
Sp1 and Sp3 to their cognate GC-box in
embryonic cortical neurons [Chatterjee et al.,
2001]. The p35 promoter contains not only the
functionally important GC-box, but also the
consensus Egr (early growth response) binding
site. Although, the Egr binding sites are not
required for the expression of p35 in P19 or
primary cortical neurons [Ross et al., 2002],
the Egr transcription factors may regulate
the expression of p35 in response to neuro-
nal stimulation [Beckmann and Wilce, 1997;
O’Donovan et al., 1999]. A recent study suggests
that the nerve growth factor contributes to the
increased expression of p35 through the ERK-
dependent induction of Egr1 in PC12 cells
[Harada et al., 2001]. Egr-1 transcription,
DNA-binding activity, and the protein level
have been found to be upregulated by oxidative
stress induced by H2O2 in mouse osteoblasts
[Nose et al., 1991; Ohba et al., 1994; Nose and
Ohba, 1996]. Therefore, the p35 protein level
may bemodulated through the activation of the
transcription factor Egr1 in our experimental
model represented by IMR-32 cells exposed to
oxidative stress. In addition, oxidative stress
modulates transcription factors, such as AP1,
which, in turn, can act on the cdk5 promoter
[Ohshima et al., 1995].

Fig. 4. Cdk5 and p35 steady-state levels. IMR-32 cells were
treated with HNE (10 mM) or Asc/FeSO4 (500 mM/5 mM) for
the indicated times. Western blots of total cell extracts (50 mg of
total proteins per well) with antibodies recognizing cdk5 (C-8)
(A) or p35 (C-19) (B). We observe an increase in cdk5 and p35
steady-state levels at 6 h after both treatments. This response
persists for at least 24 h in the HNE treated cells, while it returns
to basal levels in Asc/FeSO4 treated cells after 24 h. Quanti-
tative analysis of cdk5 (C) and p35 (D) proteins: untreated
cells were considered as 100%. Each data point represented the
mean� SEM; n¼3; **P<0.01 (Bonferroni’s Multiple Compar-
ison Test).
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At present, the exact sequence of events
leading to the upregulation of cdk5 and p35
proteins after HNE or Asc/FeSO4 remains
unclear. Although, many pathways are known
to be redox-sensitive, the mechanism for the
redox regulation of transcription factors is not
fully understood [Allen and Tresini, 2000,
review]. Future works will elucidate the role of
oxidative stress on the transcription factors,
which regulate the cdk5 and p35 protein levels.

Our study reveals that oxidant insult upre-
gulates cdk5 activity, as well as cdk5 and p35
expression, in human neuroblastoma IMR-32
cells, suggesting that cdk5/p35 may be a kinase
member of a signaling pathway activated by
oxidative stress.
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